3.1.4 \(\int \sec (c+d x) (a+a \sec (c+d x)) \, dx\) [4]

Optimal. Leaf size=24 \[ \frac {a \tanh ^{-1}(\sin (c+d x))}{d}+\frac {a \tan (c+d x)}{d} \]

[Out]

a*arctanh(sin(d*x+c))/d+a*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {3872, 3855, 3852, 8} \begin {gather*} \frac {a \tan (c+d x)}{d}+\frac {a \tanh ^{-1}(\sin (c+d x))}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + a*Sec[c + d*x]),x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/d + (a*Tan[c + d*x])/d

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps

\begin {align*} \int \sec (c+d x) (a+a \sec (c+d x)) \, dx &=a \int \sec (c+d x) \, dx+a \int \sec ^2(c+d x) \, dx\\ &=\frac {a \tanh ^{-1}(\sin (c+d x))}{d}-\frac {a \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac {a \tanh ^{-1}(\sin (c+d x))}{d}+\frac {a \tan (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 24, normalized size = 1.00 \begin {gather*} \frac {a \tanh ^{-1}(\sin (c+d x))}{d}+\frac {a \tan (c+d x)}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(a + a*Sec[c + d*x]),x]

[Out]

(a*ArcTanh[Sin[c + d*x]])/d + (a*Tan[c + d*x])/d

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 30, normalized size = 1.25

method result size
derivativedivides \(\frac {a \tan \left (d x +c \right )+a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(30\)
default \(\frac {a \tan \left (d x +c \right )+a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(30\)
risch \(\frac {2 i a}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}\) \(59\)
norman \(-\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(67\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*tan(d*x+c)+a*ln(sec(d*x+c)+tan(d*x+c)))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 29, normalized size = 1.21 \begin {gather*} \frac {a \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + a \tan \left (d x + c\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

(a*log(sec(d*x + c) + tan(d*x + c)) + a*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 60 vs. \(2 (24) = 48\).
time = 2.52, size = 60, normalized size = 2.50 \begin {gather*} \frac {a \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) - a \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, a \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(a*cos(d*x + c)*log(sin(d*x + c) + 1) - a*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*a*sin(d*x + c))/(d*cos(d
*x + c))

________________________________________________________________________________________

Sympy [A]
time = 2.55, size = 37, normalized size = 1.54 \begin {gather*} \begin {cases} \frac {a \log {\left (\tan {\left (c + d x \right )} + \sec {\left (c + d x \right )} \right )} + a \tan {\left (c + d x \right )}}{d} & \text {for}\: d \neq 0 \\x \left (a \sec {\left (c \right )} + a\right ) \sec {\left (c \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c)),x)

[Out]

Piecewise(((a*log(tan(c + d*x) + sec(c + d*x)) + a*tan(c + d*x))/d, Ne(d, 0)), (x*(a*sec(c) + a)*sec(c), True)
)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 63 vs. \(2 (24) = 48\).
time = 0.44, size = 63, normalized size = 2.62 \begin {gather*} \frac {a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

(a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*a*tan(1/2*d*x + 1/2*c)/(tan(1
/2*d*x + 1/2*c)^2 - 1))/d

________________________________________________________________________________________

Mupad [B]
time = 0.68, size = 47, normalized size = 1.96 \begin {gather*} \frac {2\,a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))/cos(c + d*x),x)

[Out]

(2*a*atanh(tan(c/2 + (d*x)/2)))/d - (2*a*tan(c/2 + (d*x)/2))/(d*(tan(c/2 + (d*x)/2)^2 - 1))

________________________________________________________________________________________